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1 Introduction

Visual object recognition requires the identification of objects observed from different
viewpoints. In the alignment approach [Ullman 1989] objects are recognized in a two
stage process. First, the pose of the object is determined, and then the appearance of
the object from this pose is predicted and compared to the image. Such a method is
used in [Fischler & Bolles 1981, Lowe 1985, Faugeras & Hebert 1986, Chien & Aggarwal
1987, Huttenlocher & Ullman 1987, Lamdan et al 1987, Thompson & Mundy 1987]. In
these works, the method is applied to either planar or polyhedral objects.

Basri & Ullman [1988] extended the alignment approach to handle rigid objects
bounded by smooth surfaces. The method is called "the curvature method", and it
approximates the appearance of such objects from different viewpoints using the 3-D
curvature of points along the contours. The authors showed experimentally that in gen-
eral a few models are sufficient to predict the appearance of objects from all possible views
with high accuracy. This approximation is also the key for showing that the appearance
of objects with smooth bounding surfaces can be predicted by linearly combining a small
number of views [Ullman & Basri 1991].

In this paper we analyze the curvature method. We apply the method to ellipsoidal
objects and derive an expression that describes the errors obtained. We analyze this
expression and show that the error depends on the exact shape of the ellipsoid (namely,
the relative length of its axes). We show that the errors are usually small, and that, in
general, a small number of models is required to predict the appearance of an ellipsoid
from all possible views. Finally, we show experimentally that the curvature method is
not restricted to contours generated by parabolic surface patches, but it can also handle
contours generated by hyperbolic patches.

2 The Curvature Method

In this section we briefly review the curvature method. The difficulty in predicting the
appearance of objects with smooth bounding surfaces is described below. The silhouette
of an object is the set of its bounding contours observed in the image. These points
are generated by the rim of the object [Koenderink & Van Doom 1981] (also called the
contour generator [Mart 1977]), which is the set of all the points on the object's surface
whose normal is perpendicular to the visual axis. When the object contains only sharp
edge., these edges compose the rim in all views of the object. The silhouette then includes
the projection of those edges that are visible. When, however, the object is bounded by
smooth surfaces, the rim is not fixed. Instead, it smoothly changes its position on the
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object with viewpoint. To illustrate this phenomenon imagine for instance the shape of
an egg. When the observer moves slightly, the observed silhouette of the egg is generated
by a new set of points along the egg shell, and thus the silhouette appears to change its
shape.

To accurately align objects with smooth surfaces one must account for this special
property of the objects. Previous approaches to this problem included the construction
of detailed 3-D descriptions for the objects using either simple volumetric or surface
primitives [Marr & Nishihara 1978, Brown 1981, Dane & Bajcsy 1982, Potmesil 1983,
Brady et al 1985, Faugeras & Hebert 1986], or using 3-D wires [Baker 1977]. These
approaches, when handling objects with relatively complex structures, often require large
memory to represent the objects and perform extensive computations to predict their
appearances.

Basri & Ullman [1988] suggested a novel approach to predict the appearance of objects
with smooth surfaces. In their scheme an object is represented by its silhouette as seen
from a particular viewpoint. Every point along the silhouette is associated with its spatial
coordinates together with its 3-D curvature. The appearance of the object from other
viewpoints is then predicted simply by applying linear transformations to the object.
The authors showed experimentally that this method accurately predicts the appearance
of objects for relatively large transformations.

The curvature method is based on the following observation. The position change
of the rim on the object depends mainly on the 3-D curvature of the object at the rim
points. When the curvature is high the rim changes only slightly if at all. (In case the
rim lies on a sharp edge, the curvature is infinite and the rim is fixed.) The lower the
curvature is, the more significant is the position change of the rim on the object.

Following this observation the curvature can be used to approximate the position
change of the rim. The basic idea is illustrated in Figure 1. Consider an object 0 rotating
by a rotation R around the vertical axis, Y. Let p be a point on the object's rim. The
figure shows a horizontal section of the object through p. Let r. be the curvature radius
of p in this section, and let r., be a vector of length r., parallel to the X-axis. When the
object rotates by R, point p ceases to be a rim point, and it is replaced by a new point,
p', approximated by

J-- R(p - rp) + r. (1)

This approximation holds as long as the circle of curvature provides a good approximation
to the section at p. The method handles general 3-D rotation simply by substituting the
vector r. in Eq. (1) with the radius vector that corresponds to the rotation applied. The
radius vectors of a point with respect to all 3-D rotations can be recovered from a single
number, the magnitude 1I (r., r,) 1I, where r. and r. are the curvature radii with respect
to the vertical and the horizontal axes respectively. This number, together with the
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Figure 1: The curvature method. (a) A horizontal section of an ellipsoid. p is a point on the rim, r is
the radius of curvature at p, o is the center of the curvature circle, and a is the intersection of the Y-axis
with this section. (b) The section rotated. e is the new rim point, and it is approximated by eq. (1).
(Borrowed from [Basri & Ullman 1988]).

spatial coordinates of the point, is the only information required to apply the curvature
method.

Consequently, the authors suggested to represent an object by its contour image,
as observed from a particular viewing direction. Each point along the silhouette has
associated with it, along with its spatial coordinates, the magnitude of its curvature
vector. To apply a rotation to the object, the appropriate curvature radius should be
computed, and the new position of the point in the image is determined using Eq. (1).
Translation and scaling are applied to the object in a straightforward manner. The
method was implemented and applied to a number of objects, and it was shown that a
few models can predict the appearance of these objects from all possible viewpoints with
high accuracy. (See an example in Figure 2.) In addition, Ullman & Basri [1991] showed
that the curvature information is implicit in a small number of views of the object. They
used this observation to predict the appearance of objects with smooth bounding surfaces
by linearly combining a small number of images.

3 Properties of the Curvature Method

The appearance of objects with sharp boundaries (for which the radius of curvature
is zero) and of spherical and cylinderal objects is predicted exactly by the curvature
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Figure 2: Application of the curvature method to VW cars. (a) A contour image of a VW car. (b) A
prediction of the appearance of the car. (c) Matching the prediction to the actual image (an overlay of
(a) and (b)). (Borrowed from [Basri & Ullman 1988]).

method. The appearance of smooth objects with arbitrary structures is, however, only
approximated by this method. In order to demonstrate the properties of the curvature
method, we applied this method to ellipsoids and analyzed the errors obtained. The
analysis is given in this section. We first compute the errors obtained when a canonical
ellipsoid rotates around the vertical (Y) axis. We then compute the errors obtained when
the same ellipsoid rotates arbitrarily in 3-D space, and show that the errors obtained in
the two cases are similar. The error depends on the shape of the ellipsoid, in other
words, on the relative length of its axes, and it increases as the ellipsoid becomes "deep"
(elongated in the Z-direction). We show that the errors are usually small, and that, in
general, a small number of models is required to predict the appearance of an ellipsoid
from all possible views.

We start with a brief explanation of the error function used. Consider an ellipsoid
rotating about some axis V in the image plane. Let p, = (xi, yl) be the projected location
of some rim point. Following rotation, the rim changes, and the point p1 is replaced by
a new point, P2 M (z 2, Y2), such that the vector P2 - p, is perpendicular to V. Denote
the approximated location of p2 according to the curvature method by P2 = (12, 2). The
observed error is measured by 11 2 - p2 11. Clearly, if we scale the ellipsoid the observed
error would scale as well. We therefore need instead to consider a relative value for the
error that is independent of scale.

We define the error as follows. Consider the planar section through pi that is per-
pendicular to the rotation axis V. This section forms an ellipse (or a single point in case
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of a tangential plane). Let po = (xO, yo) be the center of this ellipse. The relative error
is defined by

E P2II
II p -PII

E reflects the observed error relative to the projected size of the ellipsoid. Notice that E
is independent of translation and scale of the ellipsoid.

3.1 Rotation Around the Vertical Axis
Let

x2  y2 z2

be the surface of a canonical ellipsoid. Let P, = (xi, yi) be a point on its silhouette.
When the ellipsoid rotates about the vertical (Y) axis by an angle 0, p, disappears and
is replaced by a new contour point P2 = (X2, Y2) with an identical y-value, y2 = yl. Let
h = (&2, 02) be the approximated position of p2 according to the curvature method. The
horizontal section of the ellipsoid through pi is an ellipse centered around po = (0, yo).
Notice that the points pl, p2, h, and po all lie on the same horizontal section implying
that y, = Y2 = = Yo. The relative error is therefore reduced to

(Ftir reasons of convenience we ignore the absolute value operation in the discussion
below.)

Proposition 1: The error is given by

E(,0) = cose0 + (1- cos0)- 2e +fsin 20 (2)
a2' a2VO a2

(A proof is given in Appendix A.)

The expression obtained for the error depends on two parameters the aspect ratio of
the ellipsoid, ., and the angle of rotation, 0. Consequently, the error is invariant under
a uniform scaling of the ellipsoid.

3.2 Properties of the Error

The prediction error obtained by the curvature method for a canonical ellipsoid rotating
around the Y-axis vanishes in the following three cases
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Figure 3: The errors of the curvature method as a function of 0, the angle of rotation. (a) .r f j, 9,
* and J. (b) S = 2, 4, 9 and 16. (The parameters correspond the curves at increasing heights.)

9 9 = 0 (that is, no rotation).

C2* = 1 (that is, c = a, the cross section is a circle).

C2a . = 0 (that is, c = 0, a planar ellipsoid).

As a function of 0, the angle of rotation, the error function is symmetric, that is,
similar errors are obtained both for positive and negative angles. The absolute value of
the error increases monotonically with the absolute value of 0. The partial derivative Et
also changes monotically with 0, so the error increases faster for larger values of 0. The
derivative is given by

E = )(I-C)sin0( Cos (3)a72- C02 a + C2 sin290

and assumes the following values

SE(0°) = 0.

* E0(900)= . - 1.

Figure 3 shows the error as a function of 9 for several ellipses.
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Figure 4: The maximal value of the error for canonical ellipsoids with c < a as a function of 9, the
angle of rotation.

As a function of 2j, the relative size of the axes of the ellipsoid, the error behaves
differently in each of the two ranges: (1) when c < a, and (2) when c > a. In the first
case the ellipsoid's width is larger than its depth. The error assumes small values even
for fairly large values of 0. The maximal error is obtained when

c2 3 1 (4)
a2  4 2(1 +cos9)

and it assumes the following values

* 0.24% at 300 (Q = 0.482).

* 1.26% at 450 Q2 = 0.457).

* 4.14% at 600 (. = 0.417).

Figure 4 shows the maximal error as a function of 0.

When c > a, the ellipsoid is deeper than it is wide, the error assumes larger values and
is unbounded when 0 increases to 90*. The partial derivative Er increases monotonically

with . and reaches its maximum when oo -- o, where the error increases linearly in
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Figure 5: The error as a function of the aspect ratio, ., of the ellipsoid for e = 20*, 30*, 450, and
600. (The parameters correspond the curves at increasing magnitude.)

" The derivative is given by

E4 = (1 - cosO)- 2 inos 20 (5)

and assumes the following values

.'0 2cost S(2

• E 4 (1)= (c92•

"* lim 4 . ES = 1 -cos 0.

A model for such an ellipsoid would therefore cover only a restricted range of rotations.
Larger rotations should be treated by additional models. Figure 5 shows the error as a
function of . for several values of 0.

When a complete set of models is prepared for the appearance of an ellipsoid to be
predictable from all possible views, it should be considered that following a rotation of

90* about the Y-axis, a and c, the axes lengths of the ellipsoid, interchange their roles.
Therefore, an ellipsoid with c < a changes after a rotation of 90* to an ellipsoid with
c > a. An ellipsoid with a high aspect ratio, .4, changes to an ellipsoid with a low aspect
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4c 1% 2% 3% 4% 5% 6%
2 3 3 2 2 2 2
4 3 3 3 3 2 2
9 4 3 3 3 3 2

16 4 3 3 3 3 2
49 4 3 3 3 2 2
100 4 3 3 2 2 2

Table 1: Number of models as a function of allowed error.

ratio. Consequently, the small range of rotations covered by a model for an ellipsoid with
a high aspect ratio is compensated by the large range of rotations covered by a model for
the same ellipsoid after a 900 rotation. A small number of models is therefore required
to represent the ellipsoid from all possible views.

Table 1 shows the number of models required to cover the entire range of rotations
about the Y-axis for several ellipsoids. Because of symmetry considerations only rotations
up to 900 should be considered. We see from the table that this number is small and
does not exceed four even for extreme aspect ratios and allowed error of 1%.

In preparing this table each ellipsoid was initially represented by two models, one
taken at its canonical position, the other following a 900 rotation. If the two models did
not cover the entire range of rotations, additional models were added at intermediate
positions. In this case the value of the error is somewhat different then the canonical
case. An expression describing this value is given in Appendix A.

3.3 Rotation in 3-D Space

We now consider the case of a canonical ellipso;A rotating arbitrarily in 3-D space. A
rotation in 3-D space can be decomposed into LL .e successive rotations, about the Z-,
Y-, and Z-axes. The last rotation can be ignored since it does not deform the image and
therefore does not change the errors. Let

(x cos a + y sina•) 2  (-x sina• + y cos a) 2  z2

a2  + P + j -I

be the surface of a canonical ellipsoid rotated about the Z-axis by an angle a. We now
examine this ellipsoid as it rotates about the Y-axis by an angle 0.

9



Proposition 2: The error is given by

C2

in Eq. (2), where
C2 C2 2 C2•2(

2  2-Cos a+-•sin a (6)
C2

(A proof is given in Appendix A.) Notice that, depending on a, a- assumes any value
between 9 and E2

The consequence of Proposition 4 is that after an arbitrary rotation the appearance
of an ellipsoid as it is approximated by the curvature method is in general neither better
nor worse than its approximated appearance after a rotation about any of the main axes.
As a result, if k models are required to cover all rotations around the X-axis, and k (or
less) models cover all rotations around the Y-axis, then at most k2 models are required
to cover all possible rotations in 3-D space.

4 Summary

The curvature method was designed to predict the appearance of objects with smooth
bounding surfaces from different viewpoints. In this paper we have applied the method to
ellipsoidal objects rotating arbitrarily in 3-D space and derived an expression describing
the errors obtained, we have analyzed these errors and concluded that they depend on
the shape of the ellipsoids, in other words, on the relative length of their axes, The
error increases as the ellipsoid becomes "deep" (elongated in the Z-direction). We have
shown that the errors are usually small, and that, in general, a small number of models
is required to predict the appearance of an ellipsoid from all possible views.

Finally, we would like to add that the curvature method discussed above is not re-
stricted to contours originating from elliptic surface patches. It can as equally handle
contours originating from hyperbolic patches - as long as the patches are visible. When,
however, a patch is self occluded, a new aspect of the object is observed, and an addi-
tional model should be utilized. The treatment of hyperbolic patches is demonstrated in
Figure 6. Models of three tori with different radii were prepared analytically. The models
were matched to an image that contained the tori in various positions and orientations
using the curvature method. It can be seen that although the points of the inner circles
of the tori come from hyperbolic patches, their prediction is still accurate.

10
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Figure 6: (a) A picture of three tori. (b) A contour image of the tori. (c) A prediction of the appearance
of the three tori. (b) Matching the prediction to the actual image.
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Appendix A

In this appendix we derive an expression of the error obtained when the curvature method
is applied to a canonical ellipsoid rotating about the vertical axis. We then show that a
similar error is obtained when the ellipsoid is rotating about any axis in space. Finally,
we compute the error resulting from applying the curvature method to a non-canonical
ellipsoid.

A.1 Rotation about the Vertical Axis

Let
x2  y2 z2

;2- g _j= 1

be the surface of a canonical ellipsoid. Let p, = (xj, yj) be a point on its silhouette.
Assume the ellipsoid is rotating about the vertical (Y) axis by an angle 0. Let p2 =

(X2, Y2) be the appeared position of P, following the rotation, and let P2 = (i 2 , 2) be the
approximated position of p2 according to the curvature method. The relative error for
the case of an ellipsoid that is rotating about the Y-axis is given by

E X2 - X2

X 1

Proposition 3: The error is given by

E(,0) = cos0+ (1-cos0)- F s20+ sin20

Proof: The rim of a canonical ellipsoid contains the surface points for which z = 0.
Therefore, the silhouette is defined by

X2 y 2
72-- + _g=

After the ellipsoid is rotated by an angle 0 around the Y-axis, it is described by

(xcos0 - z sin 0) 2  y2 (x sin 0 + z cos 0) 2

a 2  C21

And its silhouette is given by

X 2  2

a2 os2 0 + c2 sin2 0 +

12



The position of P2 = (x 2, Y2) is therefore

X2 = L' ja2 cos2 0 + c2 sin20
a

Y2 = Y1

Next we calculate A. Denote the surface of the canonical ellipsoid by the form
F(z, y, z) = 1. According to Basri & Ullmnan [1988] the curvature radius with respect to
the Y-axis is given by

- - a2

When the ellipsoid rotates around the Y-axis by an angle 0, the position of P2 is estimated
by the curvature method to be

C2Xl 
OS0-ý2 = X1 CoOS - a2-1- oO

P2 = Y1

Consequently, the relative error is given by

E(•,OC2  C2 • C 2 .

E(- C ) = csO+ C(1- cos) - 2os0+ C sin 2

The error is therefore a function of 0 and '2

A.2 Rotation in 3-D Space

In this section we consider the case of a canonical ellipsoid rotating arbitrarily in 3-D
space. A rotation in 3-D space can be decomposed into three successive rotations, about
the Z-, Y- and Z-axes. The last rotation can be ignored since it does not deform the
image and therefore does not change the errors. (The first rotation cannot be ignored
since it determines the actual axis of the second rotation.) Let

(z cos a + y sin a) 2  (-x sin a + y coS 0) 2  z2

a 2  + j2

be the surface of a canonical ellipsoid rotated about the Z-axis by an angle c. We now
examine this ellipsoid as it rotates about the Y-axis by an angle 0.

Proposition 4: The error is given by

C2

E(- 6)
A2 '

13



where
C2 C 2 C2 2= cos a+-sin a

Proof: In order to prove this proposition we have to show that every horizontalC2
section of the ellipsoid defined above is an ellipse with an aspect ratio A- as given in the
proposition.

Any nonempty intersection of an ellipsoid and a plane is either a point or an ellipse.
The section is nonempty when y2 < a2 sin 2 a + b2 cos2 a, and is a point when a strict
equality holds. Given the canonical ellipsoid following its rotation about the Z-axis by
an angle a, we show that the boundaries of its horizontal section can be represented as

(x - X0 )2  z2

A2  C2•

which describes a canonical ellipse displaced along the X-axis. To establish the above
relation, we show that for a constant value of y the surface equation of the rotated
ellipsoid reduces to equation of the displaced ellipse. The two equations are identical if
there exists a constant k # 0 such that the following equation system holds

kC 2 = cos2 a sin 2 a

a2  I

Czo= y sin acos a4-iT2)
1

kA2 = --

k C2(A2 _ X2) = Y2 - !!L2-- -- + b2

We obtain a system of four equations in four unknowns, A2, C2 , x0 and k. We now show
that when y2 < a 2 sin 2 a + b2 cos 2 a this system has a unique solution with positive values
for A2 and C2 .

Denote the iight side of the four equations by

cos2 a sin2 a

q = a -
q =ysinaco(a - - )

1
P*a

2-sin2 a cos2 a
=1- 1

14



The solution to the system above is given by

=kC 2xo q
XO = kC2  = q

A 2  kC 2 (A 2 - x2) + kC 2 Xz ps + q2

AkC2  
p2

2= kC2(A 2 - 4) + kC2O _ ps + q2

kA2  pr

k = kA 2  
_ p 2 r

A2  ps + q2

Notice that p, r > 0. This system therefore has a unique solution with positive values for
A2 and C2 when ps + q2 > 0. This inequality is satisfied when y2 < a2 sin 2 a + b2 Co2 a.

C2

Now, we can compute the value of the ratio AT from this equation system by dividing
the first equation by the third one

C2  .2
CA2 = a2C2os2 a+ 2 sin a

Therefore, any horizontal section of this ellipsoid is an ellipse with an aspect ratio of
C2

¢A--, and since translation does not affect the results of the curvature method, the error
is given by

EC2 ,0
A2'

Where A2 and C2 are the parameters of the ellipse, and 0 is the rotation angle around
the Y-axis.

A.3 Intermediate Models

In this section we derive an expression of the error obtained when the curvature method is
applied to an ellipsoid that is rotated about the Y-axis (rather than a canonical ellipsoid).
This computation is required for constructing Table 1 in Section 3.2.

Let
(xcosa-zsina) 2  y2  (xsina + zcOsa) 2  1

a2  WC

be the surface of a canonical ellipsoid rotated about the Y-axis by an angle a. Assume
this ellipsoid is modeled by the curvature method. We consider now the error produced
by using this model as the ellipsoid rotates about the Y-axis by an angle 0.

15



Proposition 5: The relative error is given by

E 0(-, 0) = cos0 + z'sin0 + r'(1 - cos0) -x"
a

2

where

sin a cosa(1 -2)

Cos2 a + - sin 2 a
C2

(cos2 a + ' sin2 a) 2

- cos2(a +0) +•sin2(a + 0)

cos2 at+ C2sin2 a

Proof: Let p1 = (zx, y) be a point on the silhouette of the ellipsoid. Let z, be its
depth value, and let r, be its curvature value with respect to the Y-axis. Then

S= /a2cos2 a +C sin2 a
a

Y3 = Y

--z sin a cos a(a 2 - c2)
ava2 cos 2 a + c2 sin 2 a

xac 2

(a2 cos2 a + c2 sin C)2

where p = (x,y) is the corresponding point on the silhouette of the ellipsoid in its
canonical position.

Let P2 = (X2 , y2) be the appeared position of p, after a rotation around the Y-axis by
an angle 0, p2 is given by

= /acos2(a + 0) + c2sin2(a + 0)
a

Y2 = Y

Let P2 = (12, Y2) be the position of P2 approximated by the curvature method

S2= ZlCOSO+ Z 1sinO+r,(I-cos0 )

3/2 =Y3

Since y31 = Y2= 2, the error is defined by

62 - X2
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Let

z Z-

X1

ri
Xl

X2
Xs1

and we obtain the expressions given in the proposition. Notice that

a2 72

in Eq. (2).
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